Molecular analysis of the sea anemone toxin Av3 reveals selectivity to insects and demonstrates the heterogeneity of receptor site-3 on voltage-gated Na+ channels.
نویسندگان
چکیده
Av3 is a short peptide toxin from the sea anemone Anemonia viridis shown to be active on crustaceans and inactive on mammals. It inhibits inactivation of Na(v)s (voltage-gated Na+ channels) like the structurally dissimilar scorpion alpha-toxins and type I sea anemone toxins that bind to receptor site-3. To examine the potency and mode of interaction of Av3 with insect Na(v)s, we established a system for its expression, mutagenized it throughout, and analysed it in toxicity, binding and electrophysiological assays. The recombinant Av3 was found to be highly toxic to blowfly larvae (ED50=2.65+/-0.46 pmol/100 mg), to compete well with the site-3 toxin LqhalphaIT (from the scorpion Leiurus quinquestriatus) on binding to cockroach neuronal membranes (K(i)=21.4+/-7.1 nM), and to inhibit the inactivation of Drosophila melanogaster channel, DmNa(v)1, but not that of mammalian Na(v)s expressed in Xenopus oocytes. Moreover, like other site-3 toxins, the activity of Av3 was synergically enhanced by ligands of receptor site-4 (e.g. scorpion beta-toxins). The bioactive surface of Av3 was found to consist mainly of aromatic residues and did not resemble any of the bioactive surfaces of other site-3 toxins. These analyses have portrayed a toxin that might interact with receptor site-3 in a different fashion compared with other ligands of this site. This assumption was corroborated by a D1701R mutation in DmNa(v)1, which has been shown to abolish the activity of all other site-3 ligands, except Av3. All in all, the present study provides further evidence for the heterogeneity of receptor site-3, and raises Av3 as a unique model for design of selective anti-insect compounds.
منابع مشابه
Sea anemone venom as a source of insecticidal peptides acting on voltage-gated Na+ channels.
Sea anemones produce a myriad of toxic peptides and proteins of which a large group acts on voltage-gated Na+ channels. However, in comparison to other organisms, their venoms and toxins are poorly studied. Most of the known voltage-gated Na+ channel toxins isolated from sea anemone venoms act on neurotoxin receptor site 3 and inhibit the inactivation of these channels. Furthermore, it seems th...
متن کاملPhyla- and Subtype-Selectivity of CgNa, a Na+ Channel Toxin from the Venom of the Giant Caribbean Sea Anemone Condylactis Gigantea
Because of their prominent role in electro-excitability, voltage-gated sodium (Na(V)) channels have become the foremost important target of animal toxins. These toxins have developed the ability to discriminate between closely related Na(V) subtypes, making them powerful tools to study Na(V) channel function and structure. CgNa is a 47-amino acid residue type I toxin isolated from the venom of ...
متن کاملA scorpion alpha-like toxin that is active on insects and mammals reveals an unexpected specificity and distribution of sodium channel subtypes in rat brain neurons.
Several scorpion toxins have been shown to exert their neurotoxic effects by a direct interaction with voltage-dependent sodium channels. Both classical scorpion alpha-toxins such as Lqh II from Leiurus quiquestratus hebraeus and alpha-like toxins as toxin III from the same scorpion (Lqh III) competitively interact for binding on receptor site 3 of insect sodium channels. Conversely, Lqh III, w...
متن کاملVoltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom
Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...
متن کاملEffects of ApC, a sea anemone toxin, on sodium currents of mammalian neurons.
We have characterized the actions of ApC, a sea anemone polypeptide toxin isolated from Anthopleura elegantissima, on neuronal sodium currents (I(Na)) using current and voltage-clamp techniques. Neurons of the dorsal root ganglia of Wistar rats (P5-9) in primary culture were used for this study. These cells express tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) I(Na). In curr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 406 1 شماره
صفحات -
تاریخ انتشار 2007